root mean sq anom ∂prcp ∫dIWMO ∫dprcp ∂prcp min [ mean ( { percentile_over [ T2 75% min ] [ NOAA NCDC GCPS MONTHLY STATION mean prcp ] } * masklt { [ percentile_over ( T ) ( KAPLAN Indices NINO3 avOS ) ] , 1 } ) * unnamed ] : ∂prcp ∂prcp percentile data
root mean sq anom
∂prcp ∫dIWMO ∫dprcp ∂prcp min [ mean ( { percentile_over [ T2 75% min ] [ NOAA NCDC GCPS MONTHLY STATION mean prcp ] } * masklt { [ percentile_over ( T ) ( KAPLAN Indices NINO3 avOS ) ] , 1 } ) * unnamed ] .
Independent Variables (Grids)
- Time (time)
- grid: /T (months since 01-Jan) periodic (16 Feb - 15 May) to (16 Nov - 15 Feb) by 3.0 N= 4 pts :grid
Other Info
- bufferwordsize
- 8
- CE
- null
- colorscalename
- tercileclassesscale
- CS
- null
- datatype
- doublearraytype
- maxncolor
- 254
- missing_value
- NaN
- percentile
- Probability
- units
- percent /ids ids ids /ids
- history
- mean [ ( percentile_over { T2 75% min } { NOAA NCDC GCPS MONTHLY STATION mean prcp } ) * masklt ( { percentile_over [ T ] [ KAPLAN Indices NINO3 avOS ] } , 1 ) ]
- Boxes with less than 0.0% dropped
Averaged over T2[1901, 1990] minimum 0.0% data present
$partialdiff sub prcp$ $integral dIWMO$ $integral dprcp$ $partialdiff sub prcp$ min [ mean ( { percentile_over [ T2 75% min ] [ NOAA NCDC GCPS MONTHLY STATION mean prcp ] } * masklt { [ percentile_over ( T ) ( KAPLAN Indices NINO3 avOS ) ] , 1 } ) * unnamed ] 9885849- min over avOS[, ]
root mean sq anom $partialdiff sub prcp$ $integral dIWMO$ $integral dprcp$ $partialdiff sub prcp$ min [ mean ( { percentile_over [ T2 75% min ] [ NOAA NCDC GCPS MONTHLY STATION mean prcp ] } * masklt { [ percentile_over ( T ) ( KAPLAN Indices NINO3 avOS ) ] , 1 } ) * unnamed ] - Averaged over prcp[, øh† ] IWMO[99900, 9885849] minimum 0.0% data present
Last updated: Wed, 13 Feb 2019 20:27:28 GMT
Filters
Here are some filters that are useful for manipulating data. There
are actually many more available, but they have to be entered
manually. See
Ingrid
Function Documentation for more information.
- Monthly Climatology calculates
a monthly climatology by averaging over all years.
- anomalies calculates the difference
between the (above) monthly climatology and the original data.
- Integrate along T
- Differentiate along T
- Take differences along T
Average over
T
|
RMS (root mean square with mean *not* removed) over
T
|
RMSA (root mean square with mean removed) over
T
|
Maximum over
T
|
Minimum over
T
|
Detrend (best-fit-line) over
T
|
Note on units