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Abstract 9 

This paper introduces a new gridded rainfall dataset available for Peru called PISCOp V2.1 (Peruvian 10 

Interpolated data of SENAMHI's Climatological and Hydrological Observations) that have been 11 

developed for the period 1981 to the present with an average latency of eight weeks at 0.1° spatial 12 

resolution. The merging algorithm is based on geostatistical and deterministic interpolation methods 13 

including three different rainfall sources: (i) the national quality-controlled and infilled rain gauge 14 

dataset, ii) radar-gauge merged precipitation climatologies and (iii) the Climate Hazards Group 15 

Infrared Precipitation (CHIRP) estimates. The validation results suggest that precipitation estimates 16 

are acceptable showing the highest performance for the Pacific coast and the western flank of the 17 

Andes. Furthermore, a meticulous quality-control and gap-infilling procedure allowed to reduce the 18 

formation of inhomogeneities (non-climatic breaks). The dataset is publicly available at 19 

https://piscoprec.github.io/ and is intended to support hydrological studies and water management 20 

practices. 21 

Keywords: quality control; gap-infilling; CHIRP; TRMM 2A25, quantile mapping, PISCOp V2.1 22 

 23 

1. Introduction 24 
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Accurate spatial-temporal rainfall estimations are essential for the development of scientific 25 

and operational applications which allow to understand the water cycle and its impact on 26 

natural and human systems. Conventional observations from rain gauge stations are an ideal 27 

input for the aforementioned applications. Unfortunately, strong spatial variability (Garreaud 28 

et al., 2009) and the heterogeneous and sparse distribution of rain gauges combined with 29 

systematic data quality deficiencies (Hunziker et al., 2017) precludes their widespread use 30 

within Peru. 31 

In the last decades, new algorithms based on the indirect estimations from advanced infrared 32 

and microwave satellites, have led to the construction of different gridded rainfall datasets 33 

(Grd) that are used as auxiliary data to overcome the lack of rain gauge stations, increase the 34 

spatio-temporal resolution and reduce uncertainties in rainfall predictions (Baik et al., 2015; 35 

Bi et al., 2017; Sun et al., 2017; Verdin et al., 2015). The most recent Grd with global and 36 

near real-time coverage are the Multi-Source Weighted-Ensemble Precipitation (MSWEP; 37 

Beck et al., 2018) and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS; 38 

Funk et al., 2015) products. These blended datasets are based on the merge of climate, 39 

satellite, reanalysis and gauge (the latter optional for the last versions) rainfall sources. 40 

MSWEP provides three-hour precipitation at a spatial resolution of ~10 km for the period 41 

1979-2017, while CHIRPS covers daily precipitation at ~5 km for 1981-present. Only a few 42 

studies have been done to analyze the performance of these new blended Grd in adjacent 43 

regions of Peru. For instance, Zambrano-Bigiarini et al. (2017) show that both CHIRPS and 44 

MSWEP perform well at high temporal scales, presenting problems of overestimation 45 

(underestimation) in events of light rain (violent rain) in Chile, whereas Perdigón-Morales et 46 

al. (2017) and Javier et al. (2016) mention that CHIRPS is acceptable in reproducing 47 

climatological values of monthly accumulated precipitation in Mexico and Venezuela, 48 
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respectively. Nonetheless, these studies re-used rain gauges that had been incorporated 49 

previously in the merging algorithm which alters the reliability of blended Grd performance 50 

results. In line with this, Beck et al. (2017b) reported that MSWEP performs better than 51 

CHIRPS only in regions with extensive rain gauge networks (e.g., in temperate regions). 52 

However, these findings cannot be directly applied to regions with sparse and irregular 53 

monitoring networks, such as Peru.   54 

 55 

Recently, several studies have indicated essential considerations when generating daily and 56 

monthly blended Grd in data-scarce regions: (1) efficiency in blended Grd largely depends 57 

on the predictor and the interpolation method used must be able to adapt  to scenarios with 58 

high spatial heterogeneity (Dinku et al., 2014); (2) geostatistical interpolation methods 59 

outperformed deterministic methods at annual and monthly time step, whereas for daily time 60 

step, geostatistic and deterministic methods have been proven to be comparable (Ly et al., 61 

2013); (3) difficulties exist for assuming space-stationary hypothesis and establish an 62 

adequate theoretical semivariogram at daily time step (Nerini et al., 2015); (4) the optimized 63 

interpolation parameters in deterministic methods significantly improve the final results 64 

(Chen & Liu, 2012); (5) the gap-infilling in precipitation time series is highly important to 65 

minimize inhomogeneities in the gridded datasets for periods of missing data, especially in 66 

heterogeneous regions (Beguería et al., 2015; Peterson et al., 1998; Yanto et al., 2017a); and 67 

(6) the use of simple ratios based on very high rainfall climatologies can significantly 68 

decrease the systematic bias (Strauch et al., 2016). 69 

On this basis, this study presents the development of PISCOp V2.1, a new local blended Grd 70 

headed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). 71 

PISCOp V.2.1 contains daily and monthly rainfall grids at 0.1° computed for the 1981-72 
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present period covering entire Peru with an average latency of eight weeks. It is built using 73 

serially complete rain gauge datasets, CHIRP V2.0 (without rain gauges), radar-gauge 74 

merged precipitation climatologies, geostatistics and deterministic interpolation methods and 75 

a simple monthly correction factor applied to daily estimates. The objective of this paper is 76 

to provide detailed and transparent information about the construction of PISCOp V2.1 as 77 

well as to evaluate its performance and stress its limitations. 78 

 79 

2. Material and methods 80 

2.1. Study Area 81 

Peru is located in South America's central-western region from 0°S-18°S and 68°-82°W 82 

(Figure 1), covering climatically extremely variable regions with diverse precipitation 83 

regimes that result from the interaction between synoptic-scale atmospheric currents, the 84 

complex orography of the Andes, the cold Humboldt Current System (HCS) and the El Niño 85 

Southern Oscillation (ENSO, Garreaud et al., 2009; Lavado Casimiro et al., 2012b). 86 

 87 

Figure 1 88 

 89 

In austral summer, easterly trade winds from the southerly position of the Intertropical 90 

Convergence Zone (ITCZ) transport humid air masses from the tropical Atlantic towards the 91 

Amazon basin (Carvalho et al., 2011; Manz et al., 2017; Marengo et al., 2012) and to the 92 

south along the Andes through the South American Low-Level Jet (SALLJ; Boers et al., 93 

2013; Vera et al., 2006). This period determines a marked wet season in most of Peru 94 
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(Marengo et al., 2012). Conversely, when the ITCZ is located further north (austral winter), 95 

convection and, consequently, precipitation levels are significantly reduced. 96 

In the Peruvian Andes, the climate is complex and primarily controlled by orography that 97 

acts as a topographic barrier to moisture flow, causing the formation of strong precipitation 98 

gradients at the eastern flanks of the Andes  (Bookhagen & Strecker, 2008). The inter-Andean 99 

valleys (> ~500 mm/year) are principally dominated by convective processes (Campozano 100 

et al., 2016; Garreaud, 1999) channeling moisture intrusions of the Amazon (Chavez & 101 

Takahashi, 2017). At the same time, the influence of cold and dry air masses originating from 102 

the HCS cause the driest conditions of our study area at the Pacific coast and the western 103 

flanks of the Andes (< ~500 mm/year). However, during the occurrence of ENSO the HCS 104 

weakens and the formation of severe convective storms can occur especially over the 105 

northern Pacific coast (Antico, 2009). 106 

Based on the hydro-climatic heterogeneity described above and according to the 107 

classification of Manz et al. (2017), the study area was divided into five sub-regions (Figure 108 

1a and Table 1): (i) The Pacific coast (PC, average annual precipitation of ~150 mm/year). 109 

(ii) The western Andean slopes (AW; ~400 mm/year), the eastern Andean slopes (AE; ~1100 110 

mm/year), the Andes-Amazon transition (AAT; ~3200 mm/year) and the Amazon lowlands 111 

(AL; ~2250 mm/year). 112 

Table 1 113 

 114 

2.2. Rain gauge dataset  115 
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The raw gauge dataset comprised 945 daily observation data provided by SENAMHI. The 116 

rain gauge data spans the period 1981-present and is characterized by numerous sources of 117 

systematic errors and gaps (Hunziker et al., 2017b). Even though metadata information would 118 

help to perform the data quality control, this was not used because of its limited availability. 119 

Therefore, our analysis in rain gauge data mainly focused on gross error detection and gap-120 

infilling methods. 121 

2.2.1. Quality control (QC) 122 

Most methods for quality control (QC) on rain gauge observations are designed for dense 123 

station networks (Isotta et al., 2014; Notivoli et al., 2017; Vicente-Serrano et al., 2010) which 124 

are difficult to assume in this study. As expected, assuring the quality of a dataset is more 125 

problematic for data-scarce regions due to a reduced number of neighboring stations 126 

(Hunziker et al., 2017b). Considering this fact and the lack of an established quality 127 

management system in Peru, we propose a three-step QC approach which can be considered 128 

as conservative because only gross errors are deleted if there is strong evidence for 129 

implausibility. Hence it is still expected to find some remaining errors after QC, especially 130 

in areas with a lower density of gauges. The methods that were applied are: 131 

1. Check for general problems (automatic): The first step was to delete obvious non-132 

consistent values, such as negative and non-physical precipitation, decimal-point 133 

related errors, repetitive dates, repetitive consecutive values and unexpected changes 134 

in latitude and longitude coordinates. 135 

2. Spatial extreme values check (automatic): Secondly, for the detection of extreme 136 

events of precipitation a threshold of 200 years of return period was used. If the 137 

atypical values occur in at least two neighboring (< 50 km) gauges for the same date, 138 
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they were preserved, otherwise they were deleted. This procedure was done 139 

automatically and is similar to Keller et al. (2015). 140 

3. Break and bad segments check (manual): A visual control was performed in order to 141 

recognize segments with asymmetric rounding patterns and obvious inhomogeneities. 142 

2.2.2. Gap-infilling  143 

Another source of uncertainty provides the temporal non-consistent gauge network which is 144 

susceptible to produce systematic bias during the merging phase (New et al., 2000). This 145 

gains primary importance in data-scarce regions where several rain gauges come in and out 146 

of use (Hunziker et al., 2017b). Similar to the QC approach, there is no established 147 

methodology for gap-infilling. Therefore, we propose a two-step approach in order to 148 

generate a serially complete rain gauge dataset. 149 

 150 

First, relying on neighboring gauges, the relatively newer and effective spatio-temporal 151 

imputation method CUTOFF (Feng et al., 2014) was applied to infill the previously quality 152 

controlled gauge datasets at daily and monthly time step. For this purpose, each rain gauge 153 

was grouped with other rain gauges if the following conditions were met: (1) A distance < 154 

100 km, (2) Sharing as minimum 10 years of data, and (3) A daily (monthly) linear 155 

relationship > 0.5 (> 0.8). Secondly, if the previous condition was neither fulfilled nor enough 156 

to create serially complete time series, the quantile mapping bias correction (Qm), produced 157 

by matching the empirical cumulative distribution of the collocated grid cell (CHIRPM, see 158 

section below) to the available gauge data (Gudmundsson et al., 2012), was used to infill the 159 

remaining gaps of each rain gauge.   160 

2.3. Modification of CHIRP (CHIRPM)  161 
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CHIRP products at monthly (CHIRPm) and daily (CHIRPd) time step are initially calculated 162 

from preliminary pentad time step product (CHIRPpentad) by using the following equations 163 

(Funk et al., 2015a): 164 

 165 

𝐼𝑅𝑃𝑝𝑒𝑛𝑡𝑎𝑑 = 𝑏𝑜 + 𝑏1 ∗ (𝑇𝐼𝑅 𝐶𝐶𝐷𝑝𝑒𝑛𝑡𝑎𝑑 %) … (1) 166 

 167 

𝐶𝐻𝐼𝑅𝑃𝑝𝑒𝑛𝑡𝑎𝑑 = 𝐶𝐻𝑃𝑐𝑙𝑖𝑚 ∗
𝐼𝑅𝑃𝑝𝑒𝑛𝑡𝑎𝑑

𝐼𝑅𝑃𝑐𝑙𝑖𝑚
  … (2) 168 

 169 

Where IRPpentad is the precipitation calculated from the linear model between Thermal 170 

Infrared Cold Cloud Duration Percentage (TIR CCD%) and TRMM 3B42 V7 product; 171 

𝐶𝐻𝑃𝑐𝑙𝑖𝑚 are the monthly precipitation climatologies generated by Funk et al. (2015b) and 172 

IRP𝑐𝑙𝑖𝑚 represents the climatology of IRP.  173 

Even though the use of climatic or monthly correction factors can reduce the systematic bias 174 

(Beck et al., 2017c; Funk et al., 2015a; Keller et al., 2015; Parmentier et al., 2015; Strauch et 175 

al., 2016; van Osnabrugge et al., 2017), it is crucial that the predictor of larger temporary 176 

aggregations (e.g. 𝐶𝐻𝑃𝑐𝑙𝑖𝑚) is well represented, otherwise a reverse process could occur. For 177 

Peru, we found that CHPclim extremely overestimates precipitation (> 500%) at the Peruvian 178 

coast between 8°-18°S (Figure S1). Furthermore, it does not adequately represent the 179 

orographic rainfall hotspots over the Andes-Amazon transition and considers rain gauges 180 

with poor reliability. Based on this, 𝐶𝐻𝑃𝑐𝑙𝑖𝑚 was replaced by our own climatology 181 

PISCOpclim (see Section 2.3.1), resulting in CHIRP modified (CHIRPM): 182 

𝐶𝐻𝐼𝑅𝑃𝑀𝑚 = 𝐶𝐻𝐼𝑅𝑃𝑚 ∗
PISCOp𝑐𝑙𝑖𝑚 + ℇ

𝐶𝐻𝑃𝑐𝑙𝑖𝑚 + ℇ
    … (3) 183 
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𝐶𝐻𝐼𝑅𝑃𝑀𝑑 = 𝐶𝐻𝐼𝑅𝑃𝑑 ∗
PISCOp𝑐𝑙𝑖𝑚 + ℇ

𝐶𝐻𝑃𝑐𝑙𝑖𝑚 + ℇ
    … (4) 184 

Where ℇ is a threshold defined as 0.5 in the denominator and the numerator in order to deal 185 

with values of zero or near zero. This equation is applied to monthly and daily CHIRP 186 

estimates resulting in CHIRPMm and CHIRPMd, respectively. CHIRP was before resampled 187 

to a spatial resolution of 0.1 ° through cubic spline interpolation. 188 

 189 

2.3.1. PISCOp climatology (𝐏𝐈𝐒𝐂𝐎𝐩𝐜𝐥𝐢𝐦) 190 

For Peru it has been found that the TRMM precipitation radar product 2A25 (TPR, Iguchi et 191 

al., 2000) is the most suitable rainfall data source for identifying spatial precipitation 192 

variability and seasonal patterns, even for the complex orographic rainfall hotspots located 193 

in the eastern Andes (Bookhagen & Strecker, 2008; Manz et al., 2016; Nesbitt & Anders, 194 

2009). Based on this dataset, we constructed monthly climatologies at 0.1° spatial resolution. 195 

The TPR data used corresponds to the 1998-2013 period excluding the year 2014 because 196 

during that year the satellite was carrying out anomalous maneuvers related to its dismantling 197 

(Houze et al., 2015). The construction procedure of PISCOpclim (Figure 2) is summarized as 198 

follows: 199 

1. Extraction of suspicious pixels with a rain rate > 300 mm/h (Hamada & Takayabu, 200 

2014). 201 

2. Aggregation of the entire TPR dataset to mean climatologies estimates for each 202 

calendar month considering the delineation of the overpassing TPR pixel proposed 203 

by Manz et al. (2016). 204 

3. Applying a spatial bias thresholding filter to replace the pixels with large ratios (> 5 205 

median) by the average of the surrounding 3×3 kernel. 206 
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4. Smoothing of rain rate through cubic spline interpolation. 207 

5. Merging with the long-term (1981-2010) monthly climatologies rain gauge dataset 208 

(Figure 1a) using residual ordinary kriging (ROK, Section 2.4.2). 209 

 210 

2.4. PISCOp V.2.1 Merging Phase 211 

The merging phase (Figure 2) can be divided into four steps. Firstly, the provisional product 212 

P-PISCOpd was created by merging CHIRPMd and serially complete daily gauge datasets 213 

applying Residual Inverse Distance Weighting (RIDW). Secondly, PISCOpm was estimated 214 

by merging CHIRPMm and completed monthly gauge datasets using Residual Ordinary 215 

Kriging (ROK). Thirdly, a monthly correction factor (Mcf) was derived from the comparison 216 

of PISCOpm and P-PISCOpd aggregated at monthly time step. Finally, PISCOpd was 217 

estimated by multiplying Mcf with P-PISCOpd.  218 

 219 

Figure 2 220 

 221 

2.4.1. Residual Inverse Distance Weighting (RIDW) 222 

RIDW is used to generate P-PISCOpd. In this deterministic prediction method, the residuals 223 

are defined in each gauged location 𝑠𝑖, as follows: 224 

𝑟𝑜(𝑠𝑖) = 𝑋𝐵(𝑠𝑖) − 𝑋𝑂(𝑠𝑖)   … (5) 225 

𝑆𝑖  ∈ 𝑆, i = 1, . . . , N   … (6) 226 

Where N is the number of gauge observations, 𝑟𝑜  the residuals, 𝑋𝑂 the daily rain gauge values 227 

and 𝑋𝐵 the CHIRPMd value computed at each gauge location. The collocation of a rain gauge 228 

to each CHIRPMd grid cell was performed using a Smoothed Merging (SM) approach 229 

Page 10 of 50

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

described by Li & Shao (2010). To estimate the residual field (𝜇𝑗), 𝑟𝑜 was interpolated by 230 

IDW at each grid point j = 1, …, M, given by: 231 

𝜇𝑗 = {

∑ 𝑤𝑖(||𝑆𝑗 − 𝑆𝑖||)𝑟𝑜(𝑠𝑖)
𝑁
𝑖=1

∑ 𝑤𝑖(||𝑆𝑗 − 𝑆𝑖||)𝑁
𝑖=1

;     𝑖𝑓 ||𝑆𝑗 − 𝑆𝑖|| ≠ 0 … (7)

𝑢𝑖                                          ;     𝑖𝑓 ||𝑆𝑗 − 𝑆𝑖|| = 0 … (8)

 232 

𝑤𝑖(||𝑆𝑗 − 𝑆𝑖||) =
1

||𝑆𝑗−𝑆𝑖||α 
 … (9) 233 

Where  ||. || is the euclidean distance, 𝑤𝑖 is the weight assigned to the gauge observation 𝑠𝑖 234 

and α is the power parameter. The α parameter controls the desired smoothness and the local 235 

behavior in the spatial prediction. High (low) values of α increase (decrease) the influence of 236 

the furthermost observations, generating low (high) variance in the residual field. For 237 

additional details on IDW see Babak & Deutsch (2009).  238 

Different studies have examined the effects of varying α for the spatial prediction of rainfall 239 

(Adhikary, 2017; Chen & Liu, 2012). Accordingly, the optimal α was estimated minimizing 240 

the root mean square error (RMSE) obtained from the 10-fold cross-validation. Finally, 241 

PPISCOpd was defined as: 242 

PPISCOpd = CHIRPMd − 𝜇 … (10) 243 

 244 

2.4.2. Residual Ordinary Kriging (ROK) 245 

ROK is used for the generation of PISCOpm. Similar to RIDW, with ROK the residuals are 246 

estimated by the equations (5) and (6) with the main difference that 𝑋𝑂 corresponds to 247 

monthly gauge estimates and 𝑋𝐵 represents the CHIRPMm values computed at each gauge 248 

location. Unlike RIDW, with ROK the residual field 𝑟𝑜 is interpolated by ordinary kriging 249 

(Grimes et al., 1999) at each grid point and added back to CHIRPMm. 250 
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To ensure the non-stationarity assumption, the residuals are converted to logarithmic scale 251 

and back-transformed after the merging phase. In this study, the variogram adjustment was 252 

automatically performed based on Hiemstra et al. (2009). For more details on the 253 

implementation of ROK refer to Goovaerts (2000). 254 

2.4.3. Monthly correction factor (Mcf) 255 

Given that a higher spatial relationship is achieved at monthly rather than at daily time step 256 

(Ly et al., 2013), PISCOpm is expected to present a higher performance compared with the 257 

monthly aggregation of P-PISCOpd. Therefore, based on Keller et al. (2015), an Mcf was 258 

added after the creation of P-PISCOpd and PISCOpm under two purposes: provide higher 259 

spatial consistency to daily predictions and ensure that the monthly aggregation of the daily 260 

product matches with the monthly product at each grid point. Mcf is, thus, calculated by using 261 

the following equation: 262 

𝑀𝑐𝑓 = {

𝑃𝐼𝑆𝐶𝑂𝑝𝑚

∑ 𝑃−𝑃𝐼𝑆𝐶𝑂𝑝𝑑(𝑖)
𝑁
𝑖=1

 𝑖𝑓 𝑀𝑐𝑓 > 0
 

1            𝑖𝑓 ∑ 𝑃 − 𝑃𝐼𝑆𝐶𝑂𝑝𝑑(𝑖)
𝑁
𝑖=1 = 0

  … (11) 263 

Where N represents the number of days of the corresponding month. 264 

Finally, PISCOpd is defined as follows: 265 

𝑃𝐼𝑆𝐶𝑂𝑝𝑑 = 𝑃 − 𝑃𝐼𝑆𝐶𝑂𝑝𝑑 ∗ 𝑀𝑐𝑓   … (12) 266 

 267 

2.5. Evaluation of PISCOp V.2.1 268 

The process for evaluating the performance of PISCOp V2.1 was performed within the period 269 

1981-2016 through two steps: Firstly, a pixel-to-point evaluation is carried out using an 270 
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independent rainfall network (ID) which consists of 100 rain gauges (Figure 1a) not 271 

previously used for the development of PISCOp V2.1.  272 

We selected all rain gauges with > 12 months of data between January 1981 and December 273 

2016 that were located within a minimum distance of 20 km from PISCOp rain gauge 274 

network. Three continuous statistics were computed comparing the time series of PISCOp 275 

V2.1 and ID (Table 2). The Pearson Correlation Coefficient (CC) was used to evaluate the 276 

capability of PISCOp V2.1 to capture rainfall variability. The RMSE measuring the average 277 

magnitude of the error and the Percent bias (PBIAS) indicates the degree to which each 278 

PISCOp V2.1 value is over- or underestimated (Teng et al., 2014). 279 

Table 2 280 

Additionality, following the criteria defined by Zambrano-Bigiarini et al. (2017), the three 281 

categorical statistics (Table 2) probability of detection (POD), false alarm rate (FAR) and 282 

threat score (TS) were used to determine PISCOp V2.1 rainfall detection capabilities within 283 

five precipitation intensity classes (Table 3). The POD and FAR indicate which fraction of 284 

the observed events were correctly detected and which fraction of the events reported by the 285 

Grd’s did not occur. TS is a general categorical statistic sensitive to hits and penalizes both 286 

missing and false alarms affected by the climatological frequency of the event. More 287 

information on the aforementioned indices can be found in Wilks (2006).  288 

Table 3 289 

Secondly, a water balance evaluation using two simple runoff ratios (RR and RRf) is carried 290 

out in 19 Peruvian catchments following the equations:  291 

𝑅𝑅 =
𝑄

𝑃
  … (13) 292 
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𝑅𝑅𝑓 =
𝑄

(𝑃−𝐸𝑇)
 … (14) 293 

Where Q, P, and ET are the annual long-term average of the discharge, precipitation, and real 294 

evapotranspiration, respectively. Unlike the pixel-to-point approach, the runoff ratios (𝑅𝑅 295 

and 𝑅𝑅𝑓) allowed assessing the long-term capacity of PISCOp V2.1 in more extensive areas. 296 

Due to the fact that the annual time step is a sufficiently large time period, we assume that 297 

the catchment storage is zero. Hence, Q and (P – ET) are expected to adopt similar values. 298 

The discharge gauges were obtained from the Environmental Research Observatory SO 299 

HYBAM (www.ore-hybam.org) and SENAMHI (Table 4 and Figure 1b). ET was calculated 300 

from Fu's equation (Yao et al., 2016) using the gridded maximum and minimum temperature 301 

dataset generated for Peru by Vicente-Serrano et al. (2017). Four Grd were used to estimate 302 

P: (1) PISCOp V2.1, (2) CHIRPM, (3) ORE-HYBAM (HOP; Guimberteau et al., 2012), 303 

which is only available for the Amazon and generated at 1° spatial resolution using ordinary 304 

kriging and (4) the previous PISCOp version (V1.0) which is based on the merging between 305 

CHIRPS and rain gauges applying kriging with external drift (Lavado et al., 2015). We used 306 

CHIRPM as a reference to explore possible improvements after the merging phase. We 307 

compare PISCO V2.1 and PISCOp V1.0 to examine the repercussions of changing CHIRPS 308 

by CHIRPM. The comparison to HOP serves to understand the role of the introduction of 309 

spatial predictors (CHIRPM). It is important to note that HOP, PISCOp V1.0, and PISCOp 310 

V2.1 present almost the same availability of rain gauges within selected upstream 311 

catchments. Therefore, the influence of rain gauge density can be handled as a common 312 

systematic variation for all Grd used.  313 

 314 

Table 4 315 
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 316 

3. Results and Discussion  317 

3.1. State and gap-infilling of the Peruvian rainfall dataset  318 

According to the three-step QC approach, 3.51% out of total data (Table 5) was data with 319 

gross error which was deleted for the next steps. The most (least) affected sub-region with 320 

data exclusion was the AW (PC).  Hunziker et al. (2017b) indicated that a large fraction of 321 

these gross errors are caused by the observers during data recording, while Hunziker et al. 322 

(2017a) mentioned that due to these errors and a large amount of missing data, 40% of the 323 

available rain gauges are inappropriate for climate analyses. Following our approach and 324 

considering that within the 1981-2016 period at least 10 years of continuous information 325 

must be available after applying QC, the number of stations had reduced from initially 945 326 

to 441 rain gauges (Figure 1a). These rain gauges (henceforth called PISCOp rainfall 327 

network) form the basis and constitute the most valuable source of information for the 328 

construction of the gridded dataset.  329 

Table 5 330 

The density of PISCOp rainfall network lies at around 282/ (106 km²) for Peru (Table 5), with 331 

maximum (minimum) density in AW (AL). These results suggest a remarkably 332 

heterogeneous distribution and very sparse conditions across whole Peru. Despite data-333 

scarcity conditions, the Peruvian rainfall network (Table 5) lies within the minimum 334 

requirements for hydrological analyses defined by the WMO (World Meteorological 335 

Organization, 1994) and it is similar to the rain gauge density presented in previous works 336 

related to the regional runoff simulation in adjacent regions of Peru (Getirana et al., 2014; 337 
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Guimberteau et al., 2012; Zulkafli et al., 2013). Also, most of the rain gauges are located in 338 

mountain recharge zones which is an important condition for rainfall-runoff simulation in 339 

Pacific and Andean drainage catchments (Figure 1). Nonetheless, the density of PISCOp 340 

rainfall network is far below conventional climatological datasets worldwide (Hofstra et al., 341 

2009; Lussana et al., 2018; Newman et al., 2015; Yatagai et al., 2012). As the rain gauge 342 

density strongly influences the merging phase (Hofstra et al., 2010) is expected that regions 343 

with lesser density introduce biases in the mean and variance of the gridded dataset. 344 

 345 

The gaps in the rain gauge series were identified as the main problem for the construction of 346 

a serially complete gauge dataset in Peru. In general, most rain gauges belonging to the 347 

PISCOp rainfall network were installed after the year 2000, which explains the high 348 

percentage of missing data (34.74%) before this date (Figure 3). For this reason, the amount 349 

of data available for the period 2001-2016 exceeds by 117% the period 1981-2000, with the 350 

most significant difference (204%) in the AL. The monthly (daily) gap-infilling approach 351 

based on neighboring stations allowed infilling the 44% (58%) of total missing data (Table 352 

5).  353 

 354 

Considering the fact that the neighboring information was not enough to create serially 355 

complete time series for all rain gauges, bias-corrected CHIRPM was added. Similar to other 356 

studies (Chaney et al., 2014; Teegavarapu & Nayak, 2017), we used the statistical tests 357 

Mann-Kendall (MK) and Kolmogorov-Smirnov (KS) to determine whether the performance 358 

of the gap-infilling procedure is appropriate. 359 

 360 

Figure 3 361 
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Firstly, the KS nonparametric test that does not use any distributional assumptions, was 362 

employed as a metric to estimate if the distribution before and after the gap-infilling 363 

procedure was identical. Considering a 5% significance level, 54 (41) rain gauges at daily 364 

(monthly) time step were flagged for evidencing a poor matching between the cumulative 365 

distribution functions (Dn > 0.1, Figure S2). In addition, Table 5 indicated a spatial average 366 

of Dn bellows to 0.07 for all the sub-regions. Next, to identify the possible formation of 367 

spurious trends, the MK test was performed in annual time series from the period 1981-2016. 368 

At a 5% significance level, 18 rain gauges (Figure S2) were identified with positive trends (τ 369 

> 0.1). Both results suggest that the gap-infilling procedure adopted in this study is acceptable 370 

showing an unclear spatial pattern on results (Figure S2). Nonetheless, note that ~14 % of 371 

the rain gauge was flagged by at least one of the tests. Therefore, is expected that 372 

inhomogeneities are present in the serially complete gauge dataset. For an individual 373 

inspection of the gap-infilling procedure see http://piscoprec.github.io/gauge. 374 

 375 

3.2. Spatial description of PISCOp 376 

The rainfall pattern for January 1998 (Figure 4) and day twenty-five of this month (Figure 5) 377 

were used to perform a visual check of PISCOp products (PISCOpm and PISCOpd, Figure 378 

2). This date was selected since an atypical and violent rain (Table 3) caused by the ENSO 379 

phenomenon was experienced in the north of Peru particularly. 380 

The outputs analysis for January 1998 was performed considering as a reference the rainfall 381 

measured in this month by PISCOp rainfall network (Figure 4a). Thus, CHIRPm (Figure 4b) 382 

only showed an acceptable representation of the spatial structure of the rainfall field within 383 

the AW. For the AE, AAT, and AL a remarkable underestimation was evident with increasing 384 

rainfall rates. Underestimation of TIR-based Grd’s, such as CHIRPm, in front of high rainfall 385 
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values is a well-known condition (Kidd & Huffman, 2011). In contrast, the PC indicates 386 

unrealistically high rain values for the entire study period (1981-2016). This pattern is a 387 

consequence of the used CHPclim as a spatial predictor. CHPclim reasonably depicts the spatial 388 

structure in the PC. Nonetheless, the lack of rain gauges for calibration produces severe 389 

overestimation rainfall amounts (Figure 1S). Regarding the CHIRPMm product (Figure 4c), 390 

in general it improved the rainfall characterization in most of the sub-regions in comparison 391 

to CHIRPm. This improvement is explained by the use of PISCOclim instead of CHPclim in 392 

the CHIRPMm construction. However, it is still unable to detect the convective storms 393 

caused by the ENSO in the northern PC. 394 

 395 

Figure 4 396 

 397 

In contrast to CHIRPm and CHIRPMm, the PISCOpm product (Figure 4d) underlies 398 

different rainfall intensities and spatial structure of the entire study area. These changes are 399 

the result of the interaction of the following three factors: (1) spatial autocorrelation among 400 

residuals (measured through the semivariogram), (2) the distribution of PISCOp rainfall 401 

network and (3) the magnitude and sign of the residuals. For the analyzed month, negative 402 

residuals and a considerable number of rain gauges lead to the rainfall increase in the AE and 403 

AW as well as to a better representation of the spatial pattern caused by ENSO in the northern 404 

PC. A similar behavior can be observed in the Peruvian Amazon (AAT and AL), where 405 

negative residuals and a reduced number of rain gauges lead to the negative local average, 406 

systematically increasing rainfall amounts when the de-correlation distance was overcome. 407 

 408 
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Even though the use of geostatistical interpolation methods allows the spatial coherence to 409 

be maximized, it must be taken into account that the predicted values in PISCOpm may differ 410 

from the rain gauge values particularly related to the formation of large residuals. This 411 

behavior has already been extensively described in Tozer et al. (2012) and further studies 412 

(Ensor & Robeson, 2008; Erdin et al., 2012; Hofstra et al., 2009). Therefore, special care 413 

must be taken when using PISCOp V2.1 for analyzing extreme events, such as those related 414 

to ENSO. 415 

 416 

For the blend process at daily time step, several products (CHIRPMd, P-PISCOpd, and Mcf), 417 

were created before generating the final dataset PISCOpd. In previous studies it has been 418 

demonstrated that in data-scarce regions the areal rainfall estimates are better represented in 419 

blended than in only gauge-based Grd (Buytaert et al., 2006; Nerini et al., 2015; Schuurmans 420 

et al., 2007). Hence, P-PISCOp (Figure 5c) was produced merging the serially complete 421 

PISCOpd rainfall network (Figure 5a) with CHIRPMd (Figure 5b). Unlike CHIRPMd, P-422 

PISCOp allowed an admissible characterization of convective storms that occurred at the 423 

northern PC and improved the rainfall scenario in AW. Nonetheless, a marked 424 

underestimation concerning CHIRPMd, was found for the rainy pixels located at the center 425 

of the AAT and AL. The explanation of this change is similar to the previous month analyzed, 426 

with the difference that at daily time step the predictor (CHIRPMd) represents the spatial 427 

variance worse causing higher instability in the residuals. Due to the absence of rain gauges, 428 

the residuals of the western sub-regions (PC, AW, and AE) are continuously and 429 

omnidirectionally transferred to the eastern sub-regions (AAT and AL) by IDW. The 430 

efficiency of this process directly depends on the residuals variance and intermittent rainfall 431 

regime (Chappell et al., 2012). A scenario with low variance and intermittency should 432 
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improve the systematic bias, otherwise, this transfer would result in inaccurate precipitation 433 

values (Figure 5c). Finally, PISCOpd (Figure 5d), unlike P-PISCOpd, decreases the bull's-434 

eye effect formation around the gauge observations relying on the spatial structure of 435 

PISCOpm. In addition, a clear precipitation increase can be observed for the AL and AAT 436 

due to the formation of Mcf values > 1 in these sub-regions. 437 

 438 

Figure 5 439 

 440 

3.3. Performance of PISCOp V.2.1 441 

As Figure 6 shows, the sub-regions PC and AW indicate the most significant improvements 442 

for PISCOp V2.1 compared to CHIRPM, although the spread of their scores slightly 443 

increments. In these sub-regions, P-PISCOpd and PISCOpd (PISCOpm) increase the 444 

accuracy of the CC to 213% and 210% (14%) compared to CHIRPMd (CHIRPMm). The 445 

RMSE show consistent reduction in random error and the systematic PBIAS is close to 0. 446 

For the AE and AAT, the performance of PISCOp V2.1 continues indicating a substantial 447 

increase (reduction) of the CC (RMSE) score with respect to CHIRPM, although these values 448 

are worse in comparison to the PC and AW. This can be explained by a lesser density of rain 449 

gauges and that TIR-based retrieval algorithms imply a lower performance under high 450 

influence of topographic complexity (Derin et al., 2016; Mantas et al., 2015; Thouret et al., 451 

2013). At monthly time step, PISCOpm provides the higher accuracy to capture the influence 452 

of the ITCZ migration through the tropical Andes despite a remarkable underestimation on 453 

the precipitation gradients for the eastern Andean slope. On the contrary, at daily time step, 454 

P-PISCOpd and PISCOpd showed a low performance that did not lead to any improvement 455 

compared to CHIRPMd. Finally, the AL presented the largest (lowest) RMSE (CC) score of 456 
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our study area. Even at monthly time step, PISCOpm presented a lower performance than 457 

CHIRPMm. Similar results have recently been reported for the Ecuadorian Amazon by Ulloa 458 

et al. (2017) who stated that the reduced number of rain gauges used for the merging phase 459 

generates spatial inconsistencies for the entire analysis period.  460 

 461 

Figure 6 462 

 463 

According to the categorical indices applied in this study, both P-PISCOpd and PISCOpd 464 

presented similar scores that were higher than CHIRPMd in the entire study area (Figure 7). 465 

In general, the detection capacity of the three products weakens as far as the precipitation 466 

intensity category (Table 3) increases, regardless of the geographical position. Comparing 467 

the categories ‘no rain’ and ‘violent rain’, the POD (FAR) score decreased (increased) 468 

drastically by 452% (245%).  The TS evidenced that the daily CHIRPMd, PISCOpd and P-469 

PISCOpd products were not able to correctly capture the fraction of rainfall events for all 470 

sub-regions. These results evidence that daily PISCOp products (CHIRPMd, P-PISCOpd, 471 

and PISCOpd) are most likely not sufficiently accurate for capturing heavy rainfall events. 472 

Hence, the use of PISCOp products to describe the intensity of extreme precipitation events 473 

is not recommended if no high-density rainfall network exist nearby. 474 

 475 

Figure 7 476 

 477 

Figure 8 illustrates the water balance evaluation of PISCOp V2.1, CHIRPM and other two 478 

Grd (PISCOp V1.0 and HOP) using runoff ratios (RRf and RR). The widest spread in RR 479 
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and RRf scores were observed within the Amazon basin indicating that PISCOp V.2.1 480 

reaches a similar score compared to HOP and an underestimation (overestimation) of 15% 481 

(28%) with regard to CHIRPM (PISCOp V1.0). For the Amazon, RR estimates are typically 482 

below 0.8 (Costa & Foley, 1997; Gusev et al., 2017; Rudorff et al., 2014) while the average 483 

values of  PISCOp V.2.1, CHIRPM, PISCOp V1.0, and HOP are situated around 0.89, 0.75, 484 

1.05 and 0.88, respectively. Similar results have been found in RRf, where PISCOp V2.1, 485 

CHIRPM, and HOP provide values close to 1 (-0.2 < RRf < 0.2). Although these high runoff 486 

ratios could be explained by excessive groundwater contribution (Zubieta et al., 2015), a 487 

rainfall underestimation scenario is a more likely explanation, especially when considering 488 

the independent validation results which indicate the PBIAS trend to be negative (Figure 6). 489 

The RRf within the Amazon evidences that CHIRPM achieves the best agreement with 490 

discharge values. Additionally, the climate correction based on 𝑃𝐼𝑆𝐶𝑂𝑝𝑐𝑙𝑖𝑚 (used in 491 

CHIRPM and PISCOp V2.1) leads to a better performance than 𝐶𝐻𝑃𝑐𝑙𝑖𝑚 (used in PISCOp 492 

V1.0) in order to eliminate the underestimation of rainfall, particularly at the eastern slopes 493 

of the Andes.  For catchments covering the Andes or Pacific, CHIRPM, PISCOp V1.0, and 494 

PISCOp V2.1 presented very slight differences in their RR and RRf scores with values mostly 495 

below 1. Unlike the Amazon, in the Andes-Pacific the change of 𝐶𝐻𝑃𝑐𝑙𝑖𝑚 to 𝑃𝐼𝑆𝐶𝑂𝑝𝑐𝑙𝑖𝑚 496 

does not affect the areal rainfall estimations, possibly due to a better distribution and higher 497 

density of the rainfall network. The RRf values of CHIRPM, PISCOp V2.1, and PISCOp 498 

V1.0 exhibited a systematic overestimation mainly for catchments >10,000 km² (Figure 8). 499 

This uncertainty could be related to streamflow alteration caused by anthropogenic factors 500 

or low ET estimates. However, it is difficult to predict and beyond the scope of this 501 

investigation. 502 
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 503 

Figure 8 504 

 505 

3.4. Impacts and detection of inhomogeneities 506 

All inputs used for the development of PISCOp V2.1 are not thoroughly homogenized. The 507 

Peruvian long-term gauge dataset is affected by a plethora of non-climatic factors, such as 508 

changes of instruments or bad observer practices (Brönnimann, 2015; New et al., 2000; 509 

Peterson et al., 1998). In addition, inconsistencies are also present in the CHIRP algorithm. 510 

For instance, they arise when infilling missing CHIRP values with the Coupled Forecast 511 

System version 2 (Saha et al., 2014) or in the overlap between the TIR archives: Globally 512 

Gridded Satellite (GriSat) and NOAA Climate Prediction Center (CPC, Funk et al., 2015). 513 

In order to detect the spatial pattern of these inhomogeneities, we apply the Pettitt test with 514 

a significance level of 5% for annual time series of each PISCOp V2.1 grid cell, and as for 515 

the water balance estimation, we use CHIRPM, PISCOp V1.0, and HOP as a reference.   516 

 517 

Figure 9a shows the years when a breakpoint was detected. In general, the three Grd indicate 518 

a wide variability in their break years and spatial extent. CHIRPM obtained the smaller 519 

inhomogeneity area within the Amazon basin (8.1%), followed by PISCOp V.2.1 (8.2%), 520 

HOP (34%) and PISCOp V1.0 (89%). The breakpoint year observed for CHIRPM is 521 

associated with the transition from GriSat to CPC, whereas the breakpoint for PISCOp V1.0 522 

notably coincides with the changes of the density of PISCOp rainfall network (Figure 3). 523 

Regarding PISCOp V2.1 and HOP, the inhomogeneity area drastically decreased due to the 524 

data gap infilling performed at each station and a further balancing-out during the 525 

geostatistical interpolation. Although breakpoints in rainfall time series can naturally occur, 526 
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no evidence was found for any of the 56 rain gauges with more than 95% of complete time 527 

series (Figure 1a). 528 

 529 

Figure 9 530 

 531 

Based on the breakpoints detected for each cell, a sensitive area (S1, Figure 9a) was defined 532 

to analyze the plausibility of the time series in more detail. As shown in Figure 8b, the 533 

intensities, break year at 5% significance level (red dotted line) and the seasonality of the 534 

three Grd at monthly time step vary considerably despite using similar inputs. The 535 

inhomogeneities in Grd imply severe impacts for the analysis of the seasonal (not shown 536 

here) and annual trend (Figure 9c). For the assessment of these impacts, the Sen’s slope 537 

estimator at 95% confidence level was used. For the 1981-2016 period, PISCOp V2.1, 538 

PISCOp V1.0, and HOP revealed a significant positive trend that exceeded 55%, 81%, and 539 

72%, respectively, the slope of CHIRPM. Artificial trends (Hofstra et al., 2010; Kingdom, 540 

2014; Nicolas & Bromwich, 2011; Tozer et al., 2012) are principally spread across the entire 541 

Peruvian Amazon, especially where data-scarcity prevails and a high amount of gaps exists.  542 

 543 

4. Summary and conclusions   544 

In this paper, we presented the development of PISCOp V2.1, a new daily and monthly long-545 

term Grd for 1981 until the present. This gridded product was generated based on the 546 

integration of serially complete gauge datasets, CHIRP data, radar-based climatologies, and 547 

geostatistical and deterministic interpolation methods. The quality of PISCOp V2.1 was 548 

assessed within six hydro-meteorological sub-regions with an independent rain gauge 549 
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network. Additionality, the runoff ratio estimation within 19 catchments allowed to evaluate 550 

the performance of PISCOp V2.1 in more extensive areas. 551 

 552 

For the first time, PISCOp V2.1 comprehensively presents the state of the Peruvian rain 553 

gauge dataset for the period 1981-2016. It has been identified that the gaps in rainfall time 554 

series represent the most determining problem for the construction of a temporally consistent 555 

Grd. This study shows that the combinations between both CUTOFF and Qm are a 556 

conservative and efficient method for successful data gap-infilling, especially for large data 557 

gaps that prevail at the beginning of the PISCOp V2.1 period.  However, this method strongly 558 

depends on the predictor and the proximity of rain gauges. Hence, it is expected that our 559 

approach applied to areas with low station density and poor performance of CHIRPM might 560 

lead to unsatisfactory results. 561 

 562 

The independent and water balance evaluation confirm that PISCOp V2.1 is the most suitable 563 

product for representing area rainfall estimates, except for the Amazon lowland where 564 

CHIRPM obtained better results. Additionally, we note the climatological correction based 565 

on PISCOpclim significantly improved the results compared to CHPclim. At daily time step, 566 

PISCOpd did not capture the convective storm intensity regardless of the geographical 567 

position. Although it seems highly attractive to use gridded data with full spatial and temporal 568 

coverage, such as PISCOp V2.1, all inhomogeneities inherent to this merged product and 569 

presented in this study must be entirely taken into account. Therefore, like for other blended 570 

Grd products (Beck et al., 2017a; Yanto et al., 2017b), we recommend to the users special 571 

care when using PISCOp V.2.1 for the analysis of trends, extreme events or other applications 572 

related to e.g. climate change. 573 
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New versions of PISCOp have been planned and it is expected to make use of new existing 574 

information sources such as IMERG (Huffman et al., 2015), cross-border rain gauges as well 575 

as to improve the data gap-infilling of rainfall time series.  576 

 577 

5. Data Access   578 

The PISCOp V2.1 product, source code, and additional information are freely available to 579 

users in NetCDF (1981-2016) and GeoTIFF (1981-present) format at the following website: 580 

https://piscoprec.github.io/. 581 

 582 

Abbreviations 583 

The full name for the abbreviations used in this paper are: 584 

CHIRP Climate Hazards Group Infrared Precipitation estimates (without station data). 

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data 

CHIRPM CHIRP modified 

CHPclim Climate Hazards Group's Precipitation Climatology 

IRP Product calculated from the linear model between TIR CCD% and TRMM 3B42 V7. 

QC Quality control 

Qm Quantile mapping  

PISCOp 

Peruvian Interpolated data of SENAMHI's Climatological and Hydrological Observations - 

precipitation product 

PISCOpclim PISCOp climatological product 

PISCOpd Daily PISCOp product  

P-PISCOp Provisional daily PISCOp product 

PISCOpm Provisional monthly PISCOp product 

TRMM 3B42 V7 3B42 product of TRMM version 7 
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TRMM 2A25 2A25 product of TRMM 

TIR CCD% Thermal Infrared Cold Cloud Duration Percentage 
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Figure 1. a) Spatial extension of PISCOp V2.1.The blue and red points represent PISCOp 

V2.1 and the independent rainfall network, respectively. The points with a cross indicate 

stations with more than 95% of data within the 1981-2016 period; b) Location and upstream 

catchments of the selected stream gauges. 
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Figure 2. Schematic overview of the development of PISCOp V2.1. 
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Figure 3. Missing data for each sub-region. Note: the rain gauges are ordered from lowest 

(upper line) to highest (lower line) missing values. 
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Figure 4. Spatial distribution of rainfall for January 1998. The four maps represent: (a) 

rainfall network, (b) CHIRPm, (c) CHIRPMm and (d) PISCOpm. 
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Figure 5. Spatial distribution of rainfall for January 25, 1998. Only values > 1 mm are 

plotted. The four maps represent: (a) rainfall network, (b) CHIRPMd, (c) P-PISCOpd and (d) 

PISCOpd. 
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Figure 6.  Box plots of continuous statistics (CC, RMSE, and PBIAS) between the daily and 

monthly products of PISCOp V.2.1 and ID. The cross represents the spatial average. 
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Figure 7. Categorical validation statistics of PISCOpd products in five quantiles classes of 

rainfall intensity for the five sub-regions (see Table 3). 
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Figure 8. Runoff ratios (𝑅𝑅 and 𝑅𝑅𝑓) between different Grd’s (PISCOp V2.1, CHIRPM, PISCOp 

V1.0 and HOP) and discharge observations for catchments draining within the Andes-Pacific (first 

column) and Amazon (second column). 
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Figure 9. a) Spatial distribution of break year (calculated by Pettit test) in annual time series of 

PISCOp V2.1, CHIRPM, PISCOp V1.0 and HOP. Only values at 95% significance level (p <0.05) 

are plotted. b) Areal monthly precipitation for the S1 region, the breaks at 95% significance level are 

plotted using a vertical red dotted line. c) Evolution of the average annual rainfall in the S1 region, 

only trend lines with a significant level of 95% were plotted. 
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Table 1. Sub-regions defined for the analysis of PISCOp V.2.1. Adapted from (Manz et al., 

2016), n represents the number of rain gauges within each sub-region. 

Sub-region 
Elevation 

(m.a.s.l) 
Climate Driver Rainfall Regime N 

Peruvian Pacific 

Coast (PC) 
0 – 1500 ITCZ, HCS, ENOS 

Wet (Dec - May) 

Dry (Jun - Nov) 
97 

Andes western 

slope (AW) 
> 1500 Elevation, ITCZ 

Wet (Dec - May) 

Dry (Jun - Nov) 
151 

Andes eastern 

slope (AE) 
> 1500 

Elevation, 

Orography, ITCZ 

Weak seasonality, 

drier JJA 
128 

Andes-Amazon 

transition (AAT) 
500 – 1500 

Orography, ITCZ, 

SALLJ 

Weak seasonality, 

drier JJA 
26 

Amazon lowland 

(AL) 
0 – 500 ITCZ, trade winds 

Weak seasonality, 

drier JJA 
39 
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Table 2. Continuous and categorical statistics. X = Grd estimate, Y = ID measurement, �̅� = 

Grd average, �̅� = ID average, N= number of data pairs, A = number of hits, B = number of 

false alarms, C = number of misses, and D = number of correct negatives. 

 Name Formula Perfect Score 

 

Continuous 

statistics 

Correlation Coefficient 

(CC) 
𝐶𝐶 = 

∑(𝑋 − �̅�)(𝑌 − �⃖� )

√∑(𝑋 − �̅�)²(𝑌 − �̅�)²
 

1 

Root Mean Squared 

Error (RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑋 − 𝑌)² 

0 

Percentage Bias 

(PBIAS) 
PBIAS = 100 × (∑(𝑋 − 𝑌)/ ∑ 𝑋) 

0 

 

Categorical 

statistics 

Probability of 

detection (POD) 
/ ( )POD A A C= +  

1 

False alarm ratio 

(FAR) 
/ ( )FAR B A B= +  

0 

Threat score (TS) / ( )TS A A B C= + +  1 
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Table 3. Classification of rainfall events based on quantiles 

Quantile 
Daily rain 

(mm/day) 

Daily Rainfall 

event 

[0 - 0.1> * [0 - 1.5> No rain 

[0.1 - 0.5> [1.5 - 5.3> Light rain 

[0.5 - 0.9> [5.3 – 19.5> Moderate rain 

[0.9 - 0.975 > [19.5 – 38.4> Heavy rain 

0.975 > 38.4> Violent rain 

* This rainfall class is considered as no rain. 
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Table 4. Summary of in-situ discharge gauge characteristics: ETP is the potential 

evapotranspiration and ET is the real evapotranspiration. 

 

 

 

 

 

 

 

 

 

 
N° 

 
Name Code 

Catchment 
Area  

(km²/1000) 

Rain gauge 
density 

(/ 106 km²) 

Discharge 
mean 
(m³/s) 

Precipitation 
mm/year 

 (PISCOp V2.1) 
ETP ET 

1 Borja BRJ 94.21 371.5 49.43 1730 973 799 

2 Chazuta CZT 69.57 445.6 30.76 2333 1043 936 

3 Pucallpa PCP 267.38 254.3 101.78 2047 996 881 

4 Requena RQN 359.26 203.2 123.34 2236 1351 1116 

5 Ardilla ARD 11.89 1093.2 1.49 916 1051 554 

6 Puchaca PCH 0.74 0 0.06 717 834 448 

7 Condorcerro CON 10.54 664.3 1.39 743 653 380 

8 Yanapampa YNP 4.27 703.3 0.41 470 678 199 

9 Santo Domingo SDG 1.89 1587.2 0.16 463 676 206 

10 La Capilla LCP 2.19 1370.8 0.19 541 695 242 

11 S&T Imperial SYT 5.96 1341.3 0.55 477 658 210 

12 Conta CNT 3.12 960.0 0.11 374 727 268 

13 Letrayoc LTY 3.57 1121.4s 0.26 502 669 304 

14 Huatiapa HTP 13.04 997.2 0.76 513 551 328 

15 Chucarapi CCP 13.51 592.2 0.32 300 604 235 

16 La Tranca LTC 2.01 993.1 0.02 123 665 93 

17 Bella Union BUN 4.30 465.5 0.12 204 698 122 

18 Puente Ilave ILV 8.12 369.2 0.32 304 523 173 

19 Puente Ramis RMS 15.09 596.2 0.72 597 549 422 
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Table 5. Overview of the state and gap-infilling of PISCOp rainfall network: BCC (%) is 

the percentage of gaps completed by bias-corrected CHIRPM, 𝐷𝑛 is the spatial average of 

KS statistic and 𝑀𝐾𝑏𝑒𝑓−𝑎𝑓 is the number of spurious trends after the gap-infilling 

procedure. 

 

Sub-regions (Total of rain gauges: 441)  

PC AW AE AAT AL Total 

 Density (/106 km²) 480 754 381 170 59 282 

 Gross error (%) 0.62 7.5 2.19 3.60 1.2 3.51 

Monthly 

No data (%) 34.8 30.94 41.44 45.14 41.72 37.41 

CUTOFF (%) 14.16 11.20 12.49 35.28 40.76 16.40 

BCC (%) 20.64 19.74 28.95 10.05 0.96 21.01 

𝑫𝒏 0.07 0.05 0.04 0.03 0.02 0.05 

Daily 

No data (%) 32.98 29.39 39.82 43.09 39.40 35.65 

CUTOFF (%) 12.22 13.88 27.04 34.07 33.72 20.56 

BCC (%) 20.76 15.51 12.78 9.02 5.68 15.09 

𝑫𝒏 0.03 0.03 0.05 0.07 0.03 0.03 

 𝑴𝑲𝒃𝒆𝒇−𝒂𝒇 4 1 7 3 3 18 
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